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Introduction
COVID-19 public health emergency status has lapsed in the United States, but community levels of  SARS-
CoV-2 remain substantial (1). SARS-CoV-2 immunity in the population is now highly heterogeneous due 
to varying degrees of  prior infection and vaccination (2). Also, successive circulating SARS-CoV-2 variants 
of  concern (VOC) with different immune evasion and infectivity properties continue to emerge. This has 
resulted in a wider variability of  viral shedding patterns than those observed during infection with the 
ancestral strain in the early months of  2020 (3, 4). Understanding the heterogeneous upper respiratory tract 
(URT) kinetics of  SARS-CoV-2 enables informed design of  health interventions such as testing, isolation, 
quarantine, and drug therapies.

Mathematical models are a vital tool for understanding mechanisms underlying observed patterns of  
viral expansion and clearance (5–10). To date, studies fitting SARS-CoV-2 dynamic models to viral load 
trajectories have estimated the timing of  innate and acquired immune responses and predicted transmission 
parameters, including superspreader events (11–23). These models facilitated estimates of  key quantities 
such as expected duration of  the infectious period and the timing of  peak viral load relative to symptom 
onset (21, 22, 24, 25). They also provided a theoretical means for testing treatment regimens and predicted 
that treatment within 5 days of  symptom onset would likely be associated with higher efficacy (12, 23, 24, 
26, 27), an outcome that has since been verified in multiple clinical trials (28–30). These models were also 
the first to suggest that viral rebound may occur in the context of  early antiviral treatments (12).

However, early modeling studies only considered data from a small number of  infected individuals 
(12, 20–27, 31–34) and often drew either entirely from previously uninfected and/or unvaccinated cohorts 
(14). Another consistent limitation was that most available data did not capture early time points during the 
presymptomatic phase of  infection. Model results are, therefore, not easily generalized to current SARS-
CoV-2 conditions.

The daily testing program of  the National Basketball Association (NBA) occurred regardless of  symp-
toms and identified 2,875 infections between June 2020 and January 2022, spanning the Alpha, Delta, and 
early Omicron VOC waves, as well as the roll-out of  vaccines and boosters. Hay et al. used a statistical 

The viral kinetics of documented SARS-CoV-2 infections exhibit a high degree of interindividual 
variability. We identified 6 distinct viral shedding patterns, which differed according to peak 
viral load, duration, expansion rate, and clearance rate, by clustering data from 768 infections in 
the National Basketball Association cohort. Omicron variant infections in previously vaccinated 
individuals generally led to lower cumulative shedding levels of SARS-CoV-2 than other scenarios. 
We then developed a mechanistic mathematical model that recapitulated 1,510 observed viral 
trajectories, including viral rebound and cases of reinfection. Lower peak viral loads were explained 
by a more rapid and sustained transition of susceptible cells to a refractory state during infection 
as well as by an earlier and more potent late, cytolytic immune response. Our results suggest 
that viral elimination occurs more rapidly during Omicron infection, following vaccination, and 
following reinfection due to enhanced innate and acquired immune responses. Because viral load 
has been linked with COVID-19 severity and transmission risk, our model provides a framework for 
understanding the wide range of observed SARS-CoV-2 infection outcomes.
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approach to quantify the effect of  immune history and variant on SARS-CoV-2 viral kinetics and infection 
rebound in this data set (35). However, a more mechanistic modeling approach is required for an under-
standing of  observed kinetic variability in this cohort.

Here, we identified 6 distinct shedding patterns in the NBA cohort data. We then compared how well 
candidate models that extend the classical target cell–limited model previously published by Goyal et al. 
(12, 23) and Ke at al. (21, 22) recapitulate the longitudinal URT viral load data from 1,510 sufficiently 
documented infections. After obtaining data-validated parameter estimates for each individual infection, 
we identified the factors underlying differing rates of  viral expansion and clearance, peak viral loads, and 
duration of  infection observed in the data. We used the model to identify differences between the timing 
and intensity of  the immune response during initial and reinfections and identified a potential explanation 
for viral rebound observed in the cohort.

Results
Viral shedding kinetics according to SARS-CoV-2 VOC. We first analyzed viral kinetics observed in the 

cohort according to VOC. For pre-VOC, Alpha, Delta, and Omicron variants, we observed variable kinet-
ics among cohort participants. Median values differed between variants, with the Omicron variant having 
slightly lower peak viral loads and earlier clearance, while Delta had the highest peak viral loads and pre-
VOC had the longest time to clearance (Figure 1, A–D). A high proportion of  the infections caused by 
Omicron variants occurred in participants who had received either 2 or 3 vaccine doses, whereas pre-Delta 
infections mostly occurred in unvaccinated individuals (Figure 1E).

The age structure of  the NBA cohort differs markedly from the general population. Of  the cases doc-
umented, 46% occurred in individuals under the age of  30, 42% occurred in individuals between the ages 
of  30 and 50, and only 12% occurred in individuals over the age of  50 (Figure 1F). Symptom status was 
noted for 59% of  infections, of  which 71% were symptomatic (Figure 1F). The level of  postvaccination, 
preinfection SARS-CoV-2 IgG was measured in 60% of  infections. When stratifying patients into tertiles, 
Hay et al. (35) identified low antibody titers as less than 125 (AU/mL), midrange titers as greater than 125 
AU but less than 250 AU, and high titers as greater than 250 AU, with the most infections occurring in the 
highest tertile (Figure 1F). In total, 17% of  observed infections were reinfections of  individuals followed 
longitudinally (Figure 1F).

Six distinct SARS-CoV-2 shedding patterns. We identified a subset of  infections in the NBA cohort as 
“well documented” if  they had at least 4 quantitative positive viral load measurements starting within 5 
days of  detection and if  infection was documented for 3 weeks or viral elimination was confirmed with 2 
sequential negative test results. This reduced the data set to 810 “well-documented” infections. To eliminate 
intraindividual variability from this data set, we retained 1 infection from individuals with multiple doc-
umented infections, further narrowing our focus to 768 infections. We then applied k-means clustering to 
the viral load data, clustering infections into 6 distinct viral shedding patterns (Figure 2, A–C) that differed 
according to time to viral elimination (Figure 2, C and D), area under the log10 viral load curve (log viral 
load AUC) (Figure 2, C and E), peak viral load (Figure 2, C and F), and time to peak (Figure 2, C and G).

The first group had low peak viral loads and early median time to clearance (Figure 2, A–G). The 
second group had a slightly earlier and significantly higher peak than group 1 but a similarly short duration 
(Figure 2, A–G). The third group had a similar peak viral load compared with group 2 but with a longer 
time to peak viral load and later clearance (Figure 2, A–G). The fourth group had the fastest expansion 
rate, reaching a high, early peak viral load but maintaining similar median time to clearance as group 3 
(Figure 2, A–G). The fifth group had the slowest expansion rate, taking the longest time to reach the second 
lowest peak viral load, and had the longest median time to clearance among the groups (Figure 2, A–G). In 
contrast with the prolonged low-level shedding of  group 5, the sixth group had high, somewhat early peak 
and a long shedding duration (Figure 2, A–G).

The proportion of cases that fell into each dynamic group varied when we stratified by characteristics 
included in the data set. The dynamic groups with the highest AUC, groups 5 and 6, made up 39% of the infec-
tions in the 50-plus age group, whereas 21% of infections in the under-30 group were in the high AUC groups 
(Figure 2H). Among confirmed asymptomatic infections, 29% of cases fell into group 1, defined by low peak 
and early time to clearance, relative to only 14% of confirmed symptomatic cases; the slowly expanding group 
3 cases were also less likely to be symptomatic, while high, early-peak group 4 cases were more often symptom-
atic (Figure 2I). High AUC shedding patterns were also more prevalent among infections with SARS-CoV-2 
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variants from earlier in the pandemic, making up 62% of  pre-VOC infections, 27% of  Delta infections, and 
only 8% of  Omicron infections (Figure 2J). Among unvaccinated individuals, high AUC infection patterns 
were much more frequent — 63% of  infections in unvaccinated individuals fell into groups 5 and 6, com-
pared with 11% and 9% of  infections for those whose most recent SARS-CoV-2 vaccine was their second 
dose or booster, respectively (Figure 2K).

Mathematical model fit to viral loads from 1,510 SARS-CoV-2 infections. To identify factors underlying the var-
ied viral shedding patterns in the NBA cohort, we developed competing mechanistic mathematical models 
of  viral and immune dynamics and selected the best model according to data-fitting criteria. The most com-
plex model tested adapts previously published ordinary differential equation (ODE) models for within-host 
SARS-CoV-2 infections by combining elements introduced by Goyal et al. (12, 23) and Ke et al. (21, 22). For 

Figure 1. Viral kinetics by variant in the National Basketball Association cohort from June 2020 to January 2022. In total, 1,510 SARS-CoV-2 infections are 
documented from this cohort. (A–D) Time series are stratified by variant with individual viral loads plotted in color, the median viral load plotted with a solid 
black line, and the 25th and 75th percentiles plotted in dashed black lines for prevariant of concern viruses (A), Alpha (B), Delta (C), and Omicron infections (D). 
(E) Bubble plot showing the relationship between variant of infection and vaccination status of the individual. Both the color and the size of the circle indicate 
the number of infections in each category. (F) Additional information about infections includes age, presence of symptoms, reinfection status, and preinfec-
tion antibody titer following vaccination. 
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this model, we made mechanistic assumptions inherent to many preexisting viral dynamic models including 
a viral load–dependent infectivity, viral production by infected cells, a limited number of  susceptible cells, 
and a preproduction eclipse phase for infected cells. The possible immune mechanisms included in the mod-
el were conversion of  susceptible cells to an infection-refractory state dependent on the number of  infected 
cells (presumably representing innate responses to infection), density-dependent death of  infected cells as a 
proxy for an intensifying cytolytic innate response to a higher burden of  infection, and a delayed cytolytic 
acquired immune response (Figure 3A).

We used a nonlinear, mixed-effects framework to estimate model parameters for the 1,510 infections 
documented in 1,442 individuals in the NBA cohort that had at least 4 quantitative viral load measure-
ments. We first used a representative subsample of  these infections to compare model fits for the full model, 
illustrated in Figure 3A and written out in equation 1a–1f, and for reasonable simplifications, in which 1 
or more immune mechanism was removed (Methods and Supplemental Table 1; supplemental material 
available online with this article; https://doi.org/10.1172/jci.insight.176286DS1). Under model selection 
criteria that balance simplicity with accuracy, the best model to explain the NBA data was the full model, 

Figure 2. Distinct viral dynamic profiles in the National Basketball Association cohort from June 2020 to January 2022. (A) Trajectories stratified by 
cluster assignment after k-means clustering with k = 6. Cluster centers are shown in black. (B) Heatmap of log viral load over time. Each row corresponds 
to an infection, and trajectories are ordered according to cluster. (C) Cluster centers plotted on the same axis demonstrate differing peak viral loads, time 
of viral peak, clearance rate, and time to clearance by cluster. (D) The proportion of infections cleared over time for each cluster with 95% CI shaded. (E–G) 
Box plots of the log10 viral load AUC (E), peak viral load for different dynamic groups (F), and days between detection and peak viral load (G). According to 
a Mann-Whitney U test with Bonferroni adjustment for multiple comparisons, distinctions in the mean for all possible pairs of groups are significant (P < 
0.05) except for the pairs marked “ns.” (H–J) In the final row, stacked bar charts indicate the percentage of cases that fall into each dynamic group when 
cases are stratified by age group (H), symptom status (I), lineage of infecting variant (J), and vaccination status (K).
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except for the density-dependent death of  infected cells. This model has been previously studied by Ke et al. 
(21). We then refit the best model to all infections. It is possible that models outside of  the collection tested 
here could describe the data better; however, the fits that we achieve with this model were highly accurate 
for most members of  the cohort from all 6 shedding clusters (Figure 3B and Supplemental Figure 6).

Differences in timing and intensity of  immune response may explain heterogeneous shedding patterns. We next 
sought to explore possible virologic and immunologic explanations for different observed viral shedding 
patterns. For relevant model quantities, we calculated the mean within each dynamic group at each time 
point and a 95% CI, assuming normally distributed values. Mean viral loads projected by the model for 
each group (Figure 4A) resembled those from the actual data (Figure 2C). Quantitative kinetic features 
extracted from model simulation output including peak viral load (Supplemental Figure 1A), time to peak 
(Supplemental Figure 1B), viral AUC (Supplemental Figure 1C), and shedding kinetic group also agreed 
well with those extracted from the cohort data (Supplemental Figure 1, D and G). Projections for suscep-
tible cells and infected cells suggest dynamics that track closely to viral load that differ accordingly among 
shedding subgroups (Figure 4, B and C).

To delineate mechanistic drivers of  shedding variability, we calculated the Pearson correlation coef-
ficient between individual estimates for each model parameter and 4 viral kinetic quantities predicted by 
the mathematical model: log of  peak viral load, time to peak viral load, shedding duration, and log viral 
load AUC (Supplemental Figure 2, A–D). Peak viral load correlated strongly with viral production rate, π, 
and had a strong inverse correlation with the rate of  conversion of  susceptible cells to a refractory state, ϕ 
(Supplemental Figure 2A). A linear model mapping log (π/ϕ) to log peak viral load predicted by the model 
explained a large amount of  variability (Supplemental Figure 2E). The timing of  peak viral load inversely 
correlated strongly with π, ϕ, and viral infectivity β (Supplemental Figure 2B). We fit an exponential model 
for time to peak viral load relative to infection as a function of  log(βπ), which again explained a large amount 
of  observed variability (Supplemental Figure 2F).

Shedding duration correlated most strongly with the time of  onset of  acquired immunity in the model, 
τ (Supplemental Figure 2C). Overall, the value of  τ did not predict the time of  clearance very well. This is 
because, for a large number of  individuals particularly in groups 1–4, acquired immunity was established 
after the virus was already cleared (Supplemental Figure 2G). In groups 5 and 6, timing of  acquired immu-
nity onset was more predictive of  shedding duration (R2 = 0.61) because acquired immunity was usually 
established before the virus was cleared. Numerous model parameters influenced viral AUC, though τ and ϕ 
were most important (Supplemental Figure 2D).

The viral shedding pattern for group 1 was notable for a low peak and early clearance of  infection (Sup-
plemental Figure 2H). These mild virologic outcomes occurred due to rapid generation of  refractory cells. 
Early onset of  acquired immune pressure was only occasionally necessary for viral clearance (Figure 4, D–F, 
and Supplemental Figure 2J). The higher viral peak in group 2 was driven by relatively higher values of  viral 
production and viral infectivity and low conversion to a refractory state (Supplemental Figure 2, J–L). In 
group 2 infections, innate and acquired immunity both play a role in the clearance of  infected cells (Figure 
4E). Infections classified as group 3 were distinguished by a slower upslope, resulting from low average values 
of  both viral production and infectivity (Supplemental Figure 2, K and L). Group 4 infections had a rapid, 
high peak viral load due to high viral production and infectivity, as well as relatively low average values for 
the conversion to refractory state. Higher values of  viral production and viral infectivity, and low conversion 
to a refractory state, mean that these infections rapidly burn through susceptible cells and that target cell lim-
itation slows the infection (Figure 4B and Supplemental Figure 2, J–L). Only when the viral load was already 
decreasing did acquired immunity typically initiate to help clear the infection (Figure 4E). Infections in group 
5 had a late, low peak and a long duration. Similar to group 3, the late peak was due to low rates of  viral pro-
duction and low infectivity (Supplemental Figure 2, K and L). However, unlike group 3, these individuals also 
had low values of  infected cell clearance, δ, and a very late onset of  acquired immunity τ, allowing infection 
to persist (Supplemental Figure 2, N and O). Finally, group 6 consisted of  long infections with a high peak 
viral load. These infections were distinguished by high viral production and infectivity (Supplemental Figure 
2, K and L) and globally weak immune responses, including refractory cell conversion (Supplemental Figure 
2J) and time-independent infected cell clearance rates (Supplemental Figure 2N). Thus, late-acting acquired 
immunity was often required to clear the infection (Figure 4E and Supplemental Figure 2, O and Q). Overall, 
these results suggest that a complex interplay of  viral and immune features dictate how individual infections 
differ according to peak viral load, viral expansion rate, viral clearance rate, and duration of  shedding.
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We next examined correlations between estimated model parameters and found several significant pat-
terns (Supplemental Figure 3). Viral infectivity had a strong positive correlation with viral production rate. 
The viral production rate also had a positive correlation with the intensity of  time-independent cytolytic 
immune pressure. There was a strong negative correlation between the rate of  reversion from refractory 
back to susceptible cells and time of  onset of  late cytolytic immune pressure. These results may suggest 
that viral fitness properties are related or that the durability of  early innate responses is inversely correlated 
with the onset of  delayed acquired immunity, but we cannot disentangle true biological correlations from 
potential identifiability challenges in the model structure.

More effective early immune responses and more rapid late responses may explain lower peak viral load and earlier 
clearance during reinfection with Omicron. The NBA cohort data set documented initial infection and reinfec-
tion in 67 individuals (Figure 5A and Supplemental Figure 4). Of  the first infections, 52 were caused by 
a pre-Delta variant and 15 by Delta. For all individuals, the second infection was caused by an Omicron 
variant. The mean peak viral load documented in the URT for a reinfection was 0.5 log10 viral RNA copies/
mL lower than the mean for first infections. Though there was a slight negative correlation between peak 
viral load during the first infection and that of  the second infection (Figure 5B), the relationship was not 
statistically significant (r = – 0.18, P = 0.15). The median time to clearance for reinfections was 7.5 days 

Figure 3. Mechanistic mathematical model with fits to viral loads from each cluster. (A) Schematic of the ordinary differential equations model used to 
simulate SARS-CoV-2 infection with state variables indicated by capital letters, interactions indicated by arrows, and parameters indicated by symbols 
adjacent to arrows. The model contains an early and late cytolytic immune response. (B) Examples of data from individual infections and corresponding 
model simulations colored according to cluster identified via k-means clustering as in Figure 2, with group 1 in blue, group 2 in green, group 3 in yellow, 
group 4 in orange, group 5 in red, and group 6 in purple. The black examples were not included in cluster analysis. The model also captures instances of 
rebound or nonmonotonic clearance.
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after detection compared with 11 days after detection for first infections (Figure 5C). Using slightly differ-
ent data from the NBA cohort, Kissler et al. found evidence that an individual’s relative clearance speed is 
roughly preserved across infections (36), prompting us to investigate whether this relationship, or others, 
appear in our model fits. We tested whether relative viral peak, time to peak, infection duration, or AUC 
were conserved by looking at the Pearson correlation and did not find any significant relationships (P < 
0.05). We also checked whether estimated parameter values were conserved across sequential infections in 
the same individual and again found no significant correlations across infections in the same individual.

Two model parameter values were significantly different between first versus second infections (Figure 
5D). Reinfections had higher values of  ϕ indicating a faster conversion of  susceptible cells to a refractory state. 
This more potent early immune response contributed to lower peak viral loads. The timing of the acquired 
immune response was also earlier during reinfection, suggesting more rapid activation of immune memory. We 
found that parameter values estimated during first infection were not predictive of parameter values estimated for 
a sequential infection in the same individual. Mean model projections recapitulated viral load patterns observed 
in the data (Figure 5E). We plotted cell populations from the model simulations for the 2 groups, and reinfection 
appeared to result in more refractory cells (Figure 5F) and a smaller decrease in susceptible cells (Figure 5G). The 
acquired immune response initiated sooner and at a higher magnitude during reinfection (Figure 5H).

Waning early immune response and strong initial clearance of  infected cells as a cause of  off-therapy viral rebound. 
Recent studies have shown that viral rebound during the natural course of  untreated SARS-CoV-2 infection 
is relatively common, occurring in over 10% of  cases by some estimates (37, 38), though rates vary accord-
ing to definition. In their analysis of  the NBA cohort, Hay et al. flagged 40 of  1,334 cases (3%) as rebound, 
defined by a nonmonotonic sequence of  test results (35). As their most inclusive definition of  rebound, 
they identified cases that achieved an initial clearance of  at least 2 days with cycle threshold greater than or 
equal to 30, followed by at least 2 days with cycle threshold < 30.

We defined simulated infections as rebound if  there were 2 or more peaks with height > 3 log10 RNA 
copies/mL and prominence > 0.5 log10 RNA copies/mL. We defined prominence as the height above the 
preceding local minima, as illustrated in Figure 6A. With these criteria, we identified 7.0% of  the 1,510 

Figure 4. Mechanistic differences between dynamic groups. (A–D) The mean viral load and cell populations in the mechanistic model for each group over 
time, with 95% CI shaded. The quantities are log viral load (A), number of susceptible cells (B), number of active infected cells (C), and the number of cells 
refractory to infection (D). Next, we plotted the mean ± SD of immune pressures over time for each dynamic group. (E) The infected cell clearance due to 
both constant cytolytic activity and delayed immune pressure. (F) The conversion of susceptible cells to a refractory state.
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cases as rebound. These cases are marked with an “R” and included first in Supplemental Figure 6. Note 
that we were unable to connect viral rebound to recrudescence of  COVID-19 symptoms because we do not 
have daily reports of  symptom status.

We observed several differences between rebound and nonrebound infection. In cases of  rebound, 
susceptible cells were lost more rapidly initially but also replenished earlier from the refractory com-
partment (Figure 6B). On average, rebound trajectories had both an earlier peak in infected cells and an 
earlier, higher peak in refractory cells (Figure 6, C and D). The large number of  refractory cells drives 
a more rapid replenishment of  susceptible cells. The persistence of  infected cells with reemergence of  
susceptible cells allowed for a second surge of  viral production, which had been reduced by fast early 
clearance of  infected cells (Figure 6E). The delayed onset of  the late acquired immune response also 
allowed sufficient time for this to occur before the infection was ultimately cleared (Figure 6, E and F). 
Cases with rebound had higher viral production rates and higher viral infectivity, which combined to 
allow for growth of  the viral population even with a reduced number of  target cells. Rebound cases also 
had a higher clearance rate and a faster conversion of  susceptible cells to a refractory state. Together, 

Figure 5. Mechanistic underpinning of more rapid clearance of SARS-CoV-2 during reinfection versus initial infection. Initial infection and reinfection 
were documented for 67 individuals in the NBA cohort. (A) Examples of data and model fits for infection and reinfection in the same individual. (B) As 
measured from the data, peak viral load of reinfection against peak viral load of first infection. In all cases, the variant causing the reinfection was Omi-
cron, and the variant causing the first infection was either Delta or a pre-Delta variant. The mean peak viral load was around 0.5 log lower for second infec-
tion (t test statistic = 2.26, P = 0.0254). (C) Proportion of infections cleared for reinfection (blue) and first infections (gray) over time, as measured from the 
data. Median time to clearance is 7.5 versus 12 days since detection. (D) Box plots of estimated individual parameters for infection and reinfection that are 
significantly different between the 2 groups (P < 0.05 for Mann-Whitney U test with Bonferroni adjustment for multiple comparisons). During reinfection 
with Omicron, the rate that susceptible cells convert to a refractory state is higher and the onset of the late immune response occurs significantly earlier. 
(E–H) Mean viral load (E), number of refractory cells (F), number of susceptible cells (G), and late clearance rates over time (H) for the 2 groups as predicted 
by mechanistic model.
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these forces preserve susceptible cells through the rapid initial clearance of  infected cells and protec-
tion in a refractory state. Notably, rebound cases did not have a significantly higher reversion rate, to 
account for replenishment of  susceptible cells after the first viral peak. Rather, the faster replenishment 
of  susceptible cells occurs due to the high number of  refractory cells. The viral rebound group also had 
a delayed onset of  late immune killing, which allowed time for 2 peaks to occur before pressure from the 
acquired immune system cleared the infection (Figure 6G).

Discussion
Viral kinetics are vital to understanding the pathogenesis of  infection and, ultimately, to optimizing thera-
pies. Here, we use a remarkable cohort from the NBA, which is unique both for its size and because it cap-
tures early presymptomatic time points during infection, to describe the increasing variability in viral load 
patterns observed in individuals infected with SARS-CoV-2. We observe that, with a general increase in 
population level immunity due to prior infection and vaccination, peak viral load is often lower and earlier 
with more rapid elimination of  virus.

Our mathematical model identifies testable mechanistic hypotheses for these observed differences. We 
first predict that low peak viral loads are associated with lower viral production within infected cells and 
lower viral infectivity. Moreover, for viral loads that also peak early (observed in group 1), the model predicts 
a rapid conversion of  susceptible cells to a refractory state. Both effects are compatible with data observed in 
animal models and in vitro models describing effects of  IFN that limit the extent of  viral replication and pro-
tect uninfected cells from viral entry (39–43). Appropriate followup experiments to validate this prediction 
would include local sampling of  nasal cytokines and other mediators of  local immunity during critical early 
time points of  infection, as has been done in humans for other respiratory viral infections (44).

Different viral shedding patterns are also driven by varying balances between the magnitude of  the 
early cytolytic immune response, which wanes as the number of  infected cells and viral load declines fol-
lowing peak, and the late sustained immune response. In our model, we assumed that this response does 
not dissipate with decrease in virus, so we hypothesize that most of  the late response is acquired and due to 
either expanding T cell or antibody levels. Prior work suggests that, during primary infection, plasma SARS-
CoV-2 IgG levels rise too late to explain reduction in viral load (45). However, ref. 45 was performed in an 
immunologically naive cohort and needs to be reassessed in the current infection environment (46, 47). T 
cell–mediated killing of  infected cells may also assist in elimination of  infected cells during infection (46, 
48). The results from our study suggest that, at the time of  the NBA cohort, substantial differences in timing 
and intensity of  acquired immune responses were still present and contributed to variability in viral kinetics.

Our results suggest that, upon reinfection, the early/innate response and the late acquired response are 
both more effective. The mechanisms underlying this observation are unclear. One possibility is that a higher 
density of  tissue-resident NK cells, B cells, and T cells may exist after first infection and vaccination. In other 
viral infections, it has been observed that an increase in preinfection tissue-resident T cells predicts earlier 
initiation of  a local innate and acquired response due to early antigen recognition (49, 50). These model 
predictions merit experimental follow-up.

Unfortunately, we are not able to link the heterogenous virologic patterns observed in the NBA cohort 
with severity of  symptoms or future development of  postacute sequelae of  SARS-CoV-2 infection, as these 
data were not available. For multiple other viruses, viral loads have been identified as relevant correlates of  
disease (51–54), and late SARS-CoV-2 viral loads have been linked with severity of  infection among hospi-
talized people (55, 56). During clinical trials, reductions in nasal viral load due to monoclonal antibodies, 
nirmatrelvir/ritonavir, and molnupiravir correlated with large reductions in the incidence of  hospitaliza-
tion and death (28, 29). However, early remdesivir, which had a large clinical benefit, was associated with 
no viral reduction in nasal passage several days after treatment (30), highlighting that key viral load surro-
gates may be in the lung rather than nasal passages or that early viral loads are more predictive of  outcome 
(23). Because early and peak viral load measurements are so rarely obtained during COVID-19 infection, 
the clinical importance of  these values remain unknown.

Several further limitations of  this work are important to highlight. An issue that is universal to the field 
is that our model does not capture anatomic compartmentalization of  viral shedding. Our previous model 
demonstrated in nonhuman primates that SARS-CoV-2 kinetics in the lung differ in subtle but important ways 
from those in the upper airways and that these differences are particularly important in the context of  antivi-
ral therapy (23). It is likely that our subgroups of  shedding may cluster differently if  we had access to serial 
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whole lung viral loads. The reseeding of  infection in the nose from the lungs or vice versa may also provide 
alternative explanations for the dynamics observed in this data set, particularly viral rebound. Unfortunately, 
such detailed studies are not available in any human cohort. Studies using saliva do suggest slightly different 
kinetics than those from nasal swabs (57), but it is doubtful that saliva captures total viral load in the lung.

Another issue shared by all mathematical models in the field is the lack of  sufficiently granular, tis-
sue-based immune data to precisely model the innate and acquired immune responses. Rather, our model 
uses several terms to capture the timing and intensity of  what is likely to be a complex, multicomponent 
response. As with multiple other respiratory virus models and based on experimental data showing that 
IFN-α protects cells from infection, we assume that infection temporarily makes susceptible cells refractory 
to viral entry (21–23, 40, 43). Finally, we assume there is a late, sustained immune response that varies by 
intensity and timing, compatible with an acquired memory response.

A final limitation shared by all intrahost SARS-CoV-2 models in humans is that we are not able to 
measure potentially important initial conditions of  infection, including viral inoculum and the number 
of  immune cells within a relevant spatial microenvironment of  infection. Thus, the model may overas-
cribe observed differences in observed viral load trajectories to differences in immune responses rather than 
exposure viral load.

In summary, we identify distinct shedding patterns in adults with SARS-CoV-2 infection, with shorter, 
lower viral load infection more commonly observed in people with Omicron infection, prior vaccination, and 
recent prior infection. The mechanistic predictors of  rapidly contained infection are more rapid conversion 
of  susceptible cells to a refractory state, along with more rapid and intense late cytolytic immune responses.

Figure 6. Model fitting to viral rebound in the NBA cohort. (A) We classified infections as examples of viral rebound if there were at least 2 peaks in the 
model simulation with height of 3 logs and prominence of 0.5 log. (B–F) Mean number of susceptible cells (B), number of active infected cells (C), number of 
target cells that are refractory (D), viral load (E), and rate of late clearance (F) as predicted by our mathematical model for rebound versus nonrebound cases 
in red and blue, respectively. The 95% CI is shaded. (G) Distribution of individual parameter estimates for the rebound versus nonrebound cases. Only those 
for which the mean differs significantly are displayed (P < 0.05 for Mann-Whitney U test with Bonferroni adjustment for multiple comparisons).
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Methods
Sex as a biological variable. Our study examined data from the NBA cohort that did not include the biological 
sex of  infected individuals. Based on the demographics of  the NBA and supporting staff, it is reasonable 
to assume that infections in males are markedly overrepresented in the data. Some studies have found that 
sex influences viral loads and shedding dynamics (58–60). However, others have found no influence on 
shedding dynamics (61, 62).

Study overview. We analyzed SARS-CoV-2 viral load data collected during untreated infections in the 
NBA cohort. We clustered these data into 6 dynamic groups, which were statistically different in terms 
of  peak viral load, time to peak viral load, viral load AUC, and time to clearance. Drawing on previous 
models in the field, we developed a set of  candidate ODE mathematical models. We then used model selec-
tion theory to determine which version the data support most strongly. With a validated model of  SARS-
CoV-2 infection, we examined which parameter values differ to explain the variable viral shedding patterns 
observed in the 6 dynamic groups. We also used this approach to explain the differing dynamics of  first and 
second infections captured in the NBA cohort and to explain the mechanisms underlying viral rebound.

Data preprocessing. We used data from the NBA cohort previously published by Hay et al. (35). The group 
documented 2,875 individual SARS-CoV-2 infections in 2,678 people through frequent quantitative PCR 
(qPCR) testing. First, we filtered these data to include only infections with at least 4 positive quantitative 
samples to provide adequate viral dynamics data for model fitting. This yielded 1,510 infections in 1,442 indi-
viduals, of  which 177 were caused by a pre-VOC variant, 46 by Alpha, 163 by Delta, and 1,124 by Omicron 
(Figure 1A). We further identified a “well-documented” subset of  these infections by filtering for infections 
that had their first quantitative test within 5 days of  detection and included test results through 20 days after 
detection or confirmed elimination of  virus prior to day 20 (2 consecutive negative tests). This “well-docu-
mented” group consisted of  810 individual infections in 768 people. For clustering, we randomly chose 1 
infection to retain from each individual with multiple documented infections, resulting in a group of  768 
infections in 768 individuals. We also filtered the “well-documented” group for infections with a negative test 
result within 2 days prior to detection, yielding 266 cases with both early detection and 3 weeks of  documen-
tation. We refer to this subset as “fully documented.”

Quantitative features of  viral dynamics. To convert cycle threshold (Ct) values to viral genome equivalents, 
we averaged Ct1 and Ct2 for each individual and applied equation S2 from Kissler et al. (63). Hence,

 

where the concentration of  viral RNA is in copies/mL.
We calculated the peak viral load for a given infection as the maximum measured log10 viral load over 

all quantitative data points, and the time to peak viral load was the day of  this measurement. We calculated 
the log viral load AUC from the date of  detection through the last quantitative measure of  viral load, linearly 
imputing missing values between data points. Note that this quantity is an underestimate for individuals 
without confirmed clearance. We calculated the median time to clearance by identifying when the cumula-
tive incidence curve for clearance of  the virus crossed 50%. The cumulative incidence curve is the inverse of  
the Kaplan-Meier curve for survival of  the virus. The Kaplan-Meier curve (KM) and CI was computed using 
the Python package scikit-survival 0.21.0 (64). The cumulative incidence curve is, then, 1 – KM.

Data clustering. We clustered “well-documented” infections into 6 dynamic groups using k-means clus-
tering as implemented in the Python package scikit-learn 1.2.2 (65). As input features, we used these 21 
daily test results. These came from the day infection was detected through 20 days after detection. If  any 
daily measurements were missing between recorded test values, we imputed the missing measurements 
linearly. If  the last test date for an individual was prior to day 20, meaning there were missing daily mea-
surements after the last test, we appended negative test values to reach 20 days (Supplemental Figure 5A). 
This occurred only for infections for which clearance was confirmed with 2 consecutive negative tests, since 
we clustered “well-documented” infections.

To select these hyperparameters for the k-means clustering, we tested values of  k from 2 to 20 for 3 
possible interpolation methods, linear, quadratic, or cubic spline, and 2 possible surveillance periods, 13 or 
20 days after detection (2 or 3 weeks surveillance). Comparing these scenarios, linear interpolation up to 
20 days after detection had the lowest within cluster sum of  squares (Supplemental Figure 5B). Based on 
the location of  the “elbow” in the plots, we chose to proceed with k = 6 clusters. Using k < 6 resulted in 
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less distinctive behaviors between the groups, while using more clusters resulted in some noninterpretable 
cluster centers (Supplemental Figure 5, C–G).

Mathematical model of  SARS-CoV-2 dynamics. We considered several ODEs models for SARS-CoV-2 
infection dynamics. The full model tracks the number of  target cells that are susceptible to infection (S), 
target cells that are refractory to infection (R), infected cells in an eclipse phase (IE), infected cells actively 
producing virus (IP), and SARS-CoV-2 virions (V). Susceptible cells are infected at rate βSV and become 
refractory at rate ϕIpS. Refractory cells revert to a susceptible state at rate ρR. When cells are first infected, 
they enter an eclipse phase, from which they transition to a state of  producing virus at rate k. Productively 
infected cells are cleared at rate , where the dependence on infected cells reflects an innate immune 
response with no memory. When the duration of  infection surpasses time τ, the clearance rate of  infected 
cells increases by mIP, capturing the delayed onset of  a cytolytic acquired immune response with memo-
ry. Productively infected cells produce virus at rate π, and free virions are cleared at rate γV. Under these 
assumptions, the model has the form:

(1a) 

(1b) 

(1c) 

(1d) 

 (1e)

(1f) 

To ensure that the model did not predict spurious oscillations in viral dynamics, we enforced that viral pro-
duction was zero when IP was less than 1. In the optimal model, the parameter h = 0 for all individuals, so 
the early per-cell clearance rate of  infected cells is not density dependent.

As initial conditions, we set (S0, R0, IE0, IP0, V0) = (1 × 107, 0, 0, 0, V0). Previous models of  SARS-
CoV-2 infection in the nasal compartment have used an initial value of  1 × 107 to 1 × 108 susceptible 
cells, based on estimates that 2%–20% of  epithelial cells in the URT display the angiotensin-convert-
ing enzyme 2 (ACE2) receptor (66, 67). We assumed that the initial number of  refractory cells is zero 
because the early immune response is inactive prior to infection. We initiated simulations with zero 
infected cells, so IE0 = IP0 = 0, and with a small viral inoculum to reflect the tight bottleneck that trans-
mission places on viral replication. The number of  virions present at the outset of  infection was assumed 
to be below the limit of  detection, but the precise inoculum was initially allowed to vary for individuals. 
During model fitting, we estimated the onset of  infection relative to detection (date of  first positive test), 
noting this difference as t0. Among individuals in the NBA cohort for whom symptom onset was known, 
the mean time of  symptom onset was the date of  detection, so t0 is correlated with the incubation period 
of  SARS-CoV-2. With this in mind, we restricted estimates of t0 to fall between 0 and 20 days based on a 
2022 review by Wu et al., which reported that, across 142 studies of  SARS-CoV-2 infection, the incuba-
tion period ranged from 1.80 to 18.87 days (68).
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To maintain identifiability, we fixed 2 parameter values, setting the rate of  viral production onset to be 
k = 4 in accordance with Ke at al. (22) and the rate of  clearance of  free virions to be γ = 15 in accordance 
with Goyal et al. (12)

 Model fitting and selection. We fit the model in equation 1a–1f, as well as simpler versions that eliminate 
one or more immune components and/or the eclipse phase, to data from the NBA cohort using a nonlinear 
mixed effect approach (69). With this approach, a viral load measurement from an individual i at a time 
point k is modeled as 

 

where fV represents the solution of  the ODE model for the state variable describing the virus, θi is the 
parameter vector for individual i, and  is the measurement error for the log10-transformed 
viral load data. Furthermore, in the population model, each individual’s parameters can be written as the 
sum of  the average population value θpop and a random effect encompassing their deviation from the aver-
age, ηi; the parameters for individual i are given by θi = θpop + ηi. We fixed σ = 0.5 log10 viral RNA copies/
mL when comparing model fits, so that any differences in likelihood of  the full model occur due to a 
change in agreement between model simulations and data rather than a drastic increase in the estimated 
magnitude of  the measurement error.

For model selection, we first worked with the 266 fully documented infections (early detection and at 
least 3 weeks of  follow-up or confirmed clearance). In addition to the raw data, for individuals without 
confirmed elimination, we imputed 5 “assumed negative” test results at 2-day intervals starting at 40 days 
after detection. Out of  the 1,510 infections considered in model fitting, 629 had regular measurements past 
40 days and 99.5% of  tests collected past day 40 were negative. For viral load observations below the lower 
limit of  quantification or marked as “assumed negative,” we used the probabilistic model that Monolix 
software provides for left-censored data (70).

The candidate models that we considered are listed in Supplemental Table 1. For each candidate model, 
we used the Stochastic Approximation of the Expectation Maximization (SAEM) algorithm (71) embedded 
in the Monolix software (Monolix 2023R1, Lixoft SAS, a Simulations Plus company) to obtain the maximum 
likelihood estimation (MLE) of the vector of fixed effects, θpop, and the MLE of the vector of SDs of the ran-
dom effects, σθ, for the model parameters β, π, ϕ, ρ, δ, h, τ, m; the delay between infection and date of detection, 
t0; and the initial viral inoculum V0. We assumed a log-normal distribution for parameter values and a log-
it-normal distribution for initial conditions. The delay between infection and detection, t0, was assumed to fall 
between 0 and 20 days. The viral inoculum was assumed to fall between 0 and 250 log10 viral RNA copies/mL.

We ran the SAEM algorithm 6 times for each model using randomly selected initial values for the estimated 
parameters. Using the parameter set with the highest likelihood, we computed the Akaike Information Criterion 
(AIC) for each model. Recall that AIC = −2 max(log L) + 2m, where L is the likelihood that the data were gen-
erated by this model with these parameter values and m is the number of model parameters. Smaller AIC scores 
indicate that a model is statistically more likely to explain the data. The model with the smallest AIC score in the 
initial model selection phase included an eclipse phase, a refractory cell compartment, and time-dependent clear-
ance of infected cells but not density-dependent clearance. All AIC scores are recorded in Supplemental Table 1.

The best fit run for the optimal model estimated very little variation in the viral inoculum between indi-
viduals. The population average was V0_pop = 97.3, while the SD of  the distribution of  random effects was 
only ωV0 = 0.05, suggesting that fixing this parameter at the same value for all individuals may still allow 
for reasonable fits. We fixed V0 near the estimated population mean, V0 = 97 for all individuals and re-ran 
the SAEM algorithm. This yielded very similar fits to the best fit from Supplemental Table 1, with a slightly 
lower AIC score of  13,731 compared with 13,738. While we expect that the actual viral exposure initiating 
individual infections in the NBA cohort varied, this suggests that estimating V0, π, and t0 simulataneously 
for each individual does not lend additional flexibility. For further model fitting, we kept V0 fixed at 97.

To test whether variability in viral dynamics can be attributed to differences in prior exposure, age, 
or infecting lineage, we performed 1-way ANOVA for the random effects of  each of  the estimated model 
parameters against these covariates (implemented in monolix). In this case, the null-hypothesis is that the 
mean of  the random effects (calculated from the individual parameters sampled from the conditional dis-
tribution) is the same for each category of  the categorical covariate. Ranking all possible covariates by their 
P value, the most likely covariate was between the onset of  acquired immunity and vaccination status. We 
tried adding this as a covariate to the model, which allows for a perturbation of  the population mean τpop, 
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by some value βτ _ j for each possible vaccination status j. Including this covariate improved the model fit 
according to AIC score, improving from 13,731 to 13,627. We next checked whether this was a meaningful 
addition to the model with the Wald test, which tests the null hypothesis that βτ _ j = 0 for each possible 
vaccination status j. Infections in unvaccinated individuals were significantly different from infections in 
individuals who had been boosted (βτ  _0 doses = 0.73, P < 2.2 × 10–16) and the group that had no record (βτ  

_ no record = 0.44, P = 6.77 × 10–7). However, individuals who had received 1, 2, or 3+ vaccinations were 
not significantly different from each other (βτ _ 1 dose = –0.36, P = 3.6 × 10–1; βτ _ 2 dose = –0.076, P = 3.18 
× 10–1). This prompted us to regroup vaccination status into a new categorical covariate, indicating unvac-
cinated, at least 1 dose, or no record. With this model, the onset of  acquired immunity differed significantly 
for infections in unvaccinated individuals versus those who received at least 1 dose of  the vaccine (βτ _ >1 
dose = –0.8, P < 2.2 × 10–16), but the difference between infections in unvaccinated individuals and those 
with no record was not significant (βτ _ no record = –0.2, P = 2.03 × 10–2). Then we regrouped vaccination 
status into just 2 categories, the first being individuals who are unvaccinated or have no record and the second 
being individuals with a record of 1 or more SARS-CoV-2 vaccinations. We repeated this process of choosing 
1 new covariate to add according to the lowest significant P value resulting from the 1-way ANOVA, testing its 
utility using the AIC and Wald test, and coarsening the categorization if  indicated, until no further significant 
P values resulted from the 1-way ANOVA. This resulted in 3 covariates, unvaccinated/no record versus at least 
1 recorded vaccination modified the onset of acquired immunity τ, and the infecting lineage being pre-VOC/
Delta versus Omicron versus unknown modified both the onset of acquired immunity, τ, and the rate at which 
susceptible cells enter a refractory state, ϕ. Including these covariates reduced the AIC score by 149 to 13,589. 
The models tested along the way are reported in Supplemental Table 2.

For the best-fitting model, there were significant correlations between the random effects of  model 
parameters β, π, and δ, as well as ρ and τ. We started with the best model from Supplemental Table 2 and 
allowed for linear correlations between these parameters in the final model. This further improved the AIC 
score by 111 points (Supplemental Table 3). The correlation structure of  the final set of  parameter esti-
mates is shown in Supplemental Figure 3, and the correlations between the random effects can be found at 
github (https://github.com/lacyk3/SARS-CoV-2Kinetics; commit ID, 7bd6567).

Once the final model was selected, we further restricted the SD of  the measurement error to σ = 0.4 
log10 viral RNA copies/mL to capture examples of  viral rebound in the data and ran the SAEM algorithm 
in Monolix to estimate parameters for all 1,510 infections. Population parameter values are included in 
Supplemental Table 4, and individual model fits are shown in Supplemental Figure 6. Estimated individual 
parameter values are accessible at https://github.com/lacyk3/SARS-CoV-2Kinetics.

Statistics. When comparing quantitative features and parameter values across different groups, we used 
a 2-sided Mann-Whitney U test. To determine whether covariates such as age, vaccination status, or infect-
ing variant should be considered when estimating parameters for the population model, we used 1-way 
ANOVA testing the null hypothesis that the mean of  the random effects (calculated from the individual 
parameters sampled from the conditional distribution) is the same for each category of  the categorical 
covariate. To confirm that any added covariates contributed to the model fit, we applied the Wald test to 
the deviation from the reference population mean estimated for each category of  the covariate, β_j. The 
null hypothesis of  the Wald test is that the value of  theβ_j parameter estimated by SAEM is equal to zero; 
hence, the group is equal to the reference group. When comparing characteristic viral dynamic quantities 
across sequential infections, we used a two-tailed t test. When assessing significance of  the results, we 
adjusted P values using the Bonferroni correction for the number of  comparisons before comparing against 
a significance threshold of  P > 0.05.

Study approval. All data analyzed in this work were deidentified prior to our use. It was previously 
published by Hay et al. (35) and made available on github at https://github.com/gradlab/SC2-kinetics-im-
mune-history.

Data availability. Values for all data points in graphs are reported in the Supporting Data Values file. 
The code for generating all analysis and figures included in this manuscript is available at https://github.
com/lacyk3/SARS-CoV-2Kinetics.
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